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Summary 

A poly(ether-imide) was prepared by thermal imidization of poly(amic-acid) 
intermediate resulting from the solution polycondensation reaction of a bis(ether-
anhydride), namely 2,2′ -bis-[(3,4-dicarboxyphenoxy)phenyl]-1,4-phenylene-diisopro-
pylidene dianhydride, with an aromatic diamine containing two isopropylidene 
groups, namely 4,4′-(1,4-phenylenediisopropylidene)bisaniline. A poly(ether-imide)-
polydimethylsiloxane copolymer was prepared by polycondensation reaction of the 
same bis(ether-anhydride) with an equimolar quantity of the aromatic diamine having 
isopropylidene groups and a bis(aminopropyl)polydimethylsiloxane oligomer of 
controlled molecular weight. A solution imidization procedure was used to convert 
quantitatively the poly(amic-acid) intermediates to the corresponding polyimides. The 
polymers were easily soluble in polar organic solvents and showed good thermal 
stability with decomposition temperature being above 400°C. Electrical insulating 
properties of poly(ether-imide)-polydimethylsiloxane copolymer film were evaluated 
on the basis of dielectric constant and dielectric loss and their variation with 
frequency and temperature. 
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Introduction 

High performance polymer films and coating materials are increasingly being required 
by the electronics industry for use as interlayer dielectrics and passivation coatings in 
integrated circuit fabrication. For optimum performance the dielectrics used in these 
devices should display excellent thermal and chemical resistance, low moisture 
absorption and a dielectric constant value as low as possible [1]. Aromatic polyimides 
are generally the polymers of choice for these applications due to their unique 
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combination of chemical, physical and mechanical properties [2, 3]. However, these 
polymers are processed with great difficulty because many of them are insoluble and 
infusible. Various efforts have been made on the synthesis of soluble and processable 
polyimides without much sacrifice of their excellent thermostability. The introduction 
of kinks or flexible linkages, noncoplanar units or bulky lateral groups along the 
backbone was used to improve the solubility of these polymers [4, 5]. It has been 
generally recognized that aromatic ether linkages or isopropylidene groups inserted in 
aromatic main chains provide them with a significantly lower energy of internal 
rotation. In general, such a structural modification leads to lower glass transition 
temperature and crystalline melting temperatures as well as significant improvement 
in solubility and other processing characteristics [5, 6]. Also, the incorporation of 
polydimethylsiloxane sequences in polyimides has afforded new copolymers with 
good processability, low water absorption, atomic oxygen resistance and excellent 
adhesion. The unique properties of the imide siloxane copolymeric materials make 
them especially attractive for applications in microelectronics and as structural 
adhesives. The introduction of non-polar monomers is capable to obtain polyimide 
systems with lower dielectric constant than classical aromatic polyimides [7-13]. 
In this article we report the synthesis of a poly(ether-imide) and a poly(ether-imide)-
polydimethylsiloxane copolymer containing isopropylidene groups. The properties of 
these polymers, such as solubility, thermal stability, glass transition temperature, film 
forming as well as the electrical characteristics, have been evaluated with respect to 
their chemical structure. 

Experimental 

Instrumental 

Infrared spectra were recorded with a Specord M80 spectrometer by using KBr 
pellets. 1H-NMR spectra were recorded using a Bruker Avance DRX 400, at room 
temperature. The molecular weight distributions were measured by gel permeation 
chromatography with a PL-EMD 950 evaporative mass detector instrument.  
Polystyrene standards of known molecular weight were used for calibration. The glass 
transition temperature (Tg) of the precipitated polymers was determined with a Mettler 
differential scanning calorimeter (DSC 12E), at a heating rate of 10°C/min, under 
nitrogen. Thermogravimetric analysis (TGA) was performed using a MOM 
Derivatograph (Hungary) in air, at a heating rate of 10°C/min. The initial 
decomposition temperature (IDT) is characterized as the temperature at which the 
sample achieved a 5% weight loss. The dielectric measurements were carried out 
using a Novocontrol system composed from an Alpha frequency response analyzer 
and Quattro temperature controller. The sample was prepared in the form of film with 
thickness of about 0.1 mm with gold electrodes evaporated in vacuum and placed 
inside temperature controlled sample cell. The complex permittivity: ε*(f) = ε′(f) + iε″(f) 
has been determined in the frequency (f) range from 10-1 Hz to 106 Hz and at 
temperature range from -100° to 200°C. The AC voltage applied to the capacitor was 
equal to 1.5 V. Temperature was controlled using a nitrogen gas cryostat and the 
temperature stability of the sample was better than 0.1°C. The samples where 
sandwiched between two copper electrodes of diameter 20 mm. Dielectric results were 
presented in the classical representation of complex dielectric permittivity 
(ε* = ε′ + iε″ ), as well as using the electric modulus (M* = M′ + iM″ ) representation 
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defined by Macedo et al. [14]. The real M′  and imaginary M″ parts of the electric 
modulus were calculated according to the equations: 

 
 
 
where: ε′  and ε″ are respectively real and imaginary part of the permittivity. 

Synthesis of the monomers 

The α,ω-(3-aminopropyl)oligodimethylsiloxane, 2, was synthesized by equilibration 
of the cyclic siloxane tetramer, [(CH3)2SiO]4 (octamethylcyclotetrasiloxane), with 1,3-
bis(3-aminopropyl)tetramethyldisiloxane, in a pre-established ratio to obtain the 
desired molecular weight. A base, tetramethylammonium hydroxide was used as  
a catalyst [15]. The average numerical molecular weight of the resulted oligomer as 
determined on the basis of 1H-NMR spectrum was 1120 g/mol. IR (KBr, cm-1): 805, 
1260 (Si-CH3), 1069 (Si-O-Si), 1571 (N-H bending), 1486 (C-NH2), 2962 (C-H), 
3302 (NH2). 

1H-NMR (CDCl3, ppm): δ = 0.04-0.07 (Si-(CH3)2), 0.49-0.54 (Si-CH2-
CH2-CH2-NH2), 1.24 (Si-CH2-CH2-CH2-NH2), 1.41-1.49 (Si-CH2-CH2-CH2-NH2), 
2.63-2.67 (Si-CH2-CH2-CH2-NH2).   
 
2,2′ -Bis-[(3,4-dicarboxyphenoxy)phenyl]-1,4-phenylenediisopropylidene dianhydride 
3 [16], was prepared by a multistep reaction, starting with the nitro displacement 
reaction of 4-nitro-phtalodinitrile with 4,4′ -(1,4-phenylene-diisopropylidene)-
bisphenol. (Yield: 70%). Mp:190-192°C. IR (KBr, cm-1): 1860 and 1780 (C=O), 2980 
(CH3), 1240 (C-O-C) . 1H-NMR (DMSO-d6, ppm): δ = 8.1 (2H, d), 7.53 (2H, d), 7.40 
(2H, d), 7.34 (4H, m), 7.20 (8H, m), 1.67 (12H, s). 

Synthesis of the polymers 4  and 5 

The synthesis of the polymers 4 and 5 is depicted in scheme 1. The poly(amic-acid) 
intermediate 4a was synthesized by slowly adding the solid dianhydride 3 to a stirring 
solution of the diamine 1. The reaction was conducted at room temperature, under  
a nitrogen atmosphere, in N-methylpyrrolidone (NMP). The polymer solution was 
heated at 180-185°C for 4 h, under a nitrogen stream, to perform the cyclization of the 
poly(amic-acid) 4a to the corresponding polyimide structure 5a, according to  
a method previously described [17]. The siloxane-containing poly(amic-acid) 
intermediate 4b was obtained as is described in the following example. To a solution 
of the dianhydride 3 (0.638 g, 1 mmol) in 3 ml of NMP/tetrahydrofuran (THF) (1:1) 
an amine – terminated polydimethylsiloxane oligomer 2 (0.560 g, 0.5 mmol) solution 
in 2 ml of THF was added slowly at room temperature. After the mixture was stirred 
for 1 h, diamine 1 (0.126 g, 0.5 mmol) in 2 ml NMP was added, and the mixture was 
stirred at room temperature for 10 h. The yellow, viscous solution that was obtained 
was imidized by heating in a mixture of m-xylene/NMP (2/5, v/v) at reflux 
temperature, for 4 h. The xylene was distilled off under vacuum and the resulting 
solution was precipitated in a large quantity of water to give a yellow-brown rubbery 
material, 5b, which was dried in vacuum at 80ºC, for 24 h. The yield of the reaction 
was 85%. Films of polymers 5 were prepared by casting a solution of 5% 
concentration of polymer in chloroform onto glass plates, followed by drying at room 

ε′  2 + ε″ 2 

ε″ 
; M″  = 

ε′ 2 + ε″ 2 

ε′ 
M′ = 



828 

 

temperature for 24 h under a Petri dish and for another 2 h at 130°C [18]. Films 
obtained from polymer 5a were brittle, while the films obtained from copolymer 
containing siloxane sequences 5b were flexible. 
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Scheme 1. Synthesis of the polymers 4 and 5. 

Results and discussion 

The structure of the polymers was confirmed by IR and 1H-NMR spectroscopy. In IR 
spectra of polymers 5 strong bands appearing at 1780 cm-1, 1720 cm-1, 1390 cm-1 and 
740 cm-1 were due to imide rings. The absorption peak at 1230 cm-1 was assigned to 
the aromatic ether Ar-O-Ar. The polymers 4 and 5 showed characteristic absorption 
bands at 2970 cm-1 and 2870 cm-1 due to asymmetric and symmetric stretching of 
methyl groups. In the IR spectra of polymers 4b and 5b the presence of siloxane units 
was evidenced by the characteristic absorption bands at 1080 cm-1 (Si-O-Si) and  
800 cm-1 (H3C-Si). In 1H-NMR spectrum of polymer 5b the peaks corresponding to 
the aromatic protons were centered in the interval of 7.9-6.8 ppm. The spectrum 
showed a characteristic peak at 3.7 ppm corresponding to the protons of the methylene 
group adjacent to the terminated imide ring. The characteristic peaks corresponding to 
the other protons of methylene groups appeared at 1.8 ppm and 0.6 ppm. The protons 
of isopropylidene groups appeared at 1.8 ppm.  
The polyimides 5 were soluble in polar solvents such as NMP, N,N-
dimethylacetamide, chloroform and tetrahydrofuran. The good solubility allowed the 
imidization process to be performed in solution so that the final polymer was obtained 
as an imidized product, which is more convenient than using poly(amic acid). The 
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solubility of the present polyimides is explained by the presence of flexible bridges 
such as ether and isopropylidene. In the case of polymer 5b the good solubility can be 
explained by the presence of polydimethylsiloxane segments which improve the 
flexibility of the macromolecular chains thus improving the solubility. 
The values of weight-average molecular weight of the polymers 5 (Mw) were in the 
range of 34000-44000 g/mol and the number-average molecular weight (Mn) was in 
the range of 12500-17400 g/mol (Table 1).  
The polymers did not show significant weight loss below 400°C. They began to 
decompose in the range of 415-490°C; they showed 10% weight loss in the range of 
445-500°C. The degradation process of polymers 5 exhibited two maxima of 
decomposition. The first (Tmax1) was in the range of 500-515°C and was probably due 
to the destruction of methylene groups. The second maximum of the decomposition 
(Tmax2) was in the range of 650-670°C and was due to the degradation of polymer 
chain itself (Table 1). The polymer 5a without polysiloxane segments exhibited higher 
thermal stability. 

Table 1. The properties of polymers 5. 

Poly-
mer 

Mn 
(g/mol) 

Mw 
(g/mol) 

Tg
1 

(°C) 
IDT2 

(°C) 
T10

3 

(°C) 
Tmax1

4 

(°C) 
Tmax2

5 

(°C) 

5a 12500 34000 149 490 500 500 670 
5b 17400 44000 - 415 445 515 650 

1 Glass transition temperature, from DSC curves; 2 Temperature of 5% weight loss;  
3 Temperature of 10% weight loss; 4 First maximum polymer decomposition temperature;  
5 Second maximum polymer decomposition temperature. 

The glass transition temperature of the polymer 5a, evaluated from DSC curve, was 
149°C (Table 1). It can be noticed that there is a large interval between the glass 
transition and decomposition temperature which makes this polymer attractive for 
thermoforming processing. No transitions were observed for polymer 5b containing 
siloxane sequences by DSC analysis from -150°C to 300°C. 
Electrical insulating properties of polymer film 5b were evaluated on the basis of 
dielectric constant and dielectric loss and their variation with frequency and 
temperature [19-21]. The dielectric permittivity of a material is, in general, a complex 
quantity, when measured in the frequency domain.  
Figures 1 and 2 present the dependence of real and imaginary parts of complex 
permittivity on frequency, for polymer 5b at different temperatures taken in the range 
from -100°C to 180°C. The dielectric constant (ε′ ) increased with decreasing of 
frequency as well as with increasing of temperature. From figure 2 it can be seen that 
ε′  slightly decreases with increasing frequency at low (-100°C) and moderate (20°C) 
temperature. An increase of ε′  can be observed at high temperature. This behavior can 
be attributed to the frequency dependence of the polarization mechanisms, which 
comprise the dielectric constant. The magnitude of the dielectric constant is dependent 
upon the ability of the polarizable units to orient fast enough to keep up with the 
oscillations of the alternating electric field [22]. For many applications, dielectric 
materials with stable dielectric constant and dissipation factor values across large 
frequency and temperature range are highly preferred. 
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Figure 1. Dependence of dielectric constant 
(ε′ ) versus frequency at different temperatures, 
for polymer 5b. 

Figure 2. Dependence of dielectric loss (ε″ ) 
versus frequency at different temperatures, for 
polymer 5b. 

The dielectric constant values at 100 Hz, 10 kHz and 1 MHz at room temperature 
were 3.06, 3.03 and 3.00, respectively. It can be seen that the dielectric constant at  
10 kHz is lower in comparison with that of H Film - a polyimide, which is one of the 
most common polyimides used as dielectric in microelectronics applications, having  
a dielectric constant of 3.5 [2]. This can be probably explained by the presence in the 
main chains of non-polar polysiloxane sequences and bulky C(CH3)2 groups, which 
reduced the humidity absorption and increase free volume and thus lowering the 
polarization by decreasing the number of polarizable groups per unit volume.  
The dielectric loss for polymer film 5b at different temperatures taken in the range 
from –100°C to 180°C is shown in figure 2. The dielectric loss showed similar 
dependence on frequency. At moderate temperature the dielectric loss exhibited low 
values in the interval of measured frequency. Low values of the dielectric loss are 
indicative of minimal conversion of electrical energy to heat in the dielectric material. 
It is advantageous to have low values for both dielectric constant and dielectric loss 
because electrical signals will loss less of their intensity in the dielectric medium. At 
180°C and low frequency it can be observed an increase of ε′  and a sharp increase of 
ε″. The strong low-frequency dispersion for ε′  and sharp increasing of ε″ are the 
characteristics of charge carrier systems. The localized charge carriers under an 
applied alternating electric field can hop to neighboring localized sites like the 
reciprocating motion of a jumping dipole or can jump to neighboring sites, which 
form a continuous connected network allowing the charges to travel through the entire 
physical dimensions of the polymer sample and causing the electric conduction. 
During the motion of charge carriers, the applied electric field will be a subject of 
decay. Such relaxation of electric field is termed electric field relaxation and the 
relaxation of the charge system is termed conductivity relaxation [23]. 
For the dielectric loss ε″ it can be seen two secondary relaxations (β and γ) connected 
with local movements of polymer chains. The γ relaxation could be in the same region 
with α transition of polysiloxane segments. However, the transition at low 
temperature (-100°C) was very week suggesting a partially phase mixing of the 
polyimide and polysiloxane segments. The origin of the β relaxation is not clear. The 
most probably is associated with phenyl ring motions. Then the conductivity process 
arises and masks the primary relaxation connected with the upper glass transition, 
which should have place at higher temperature. 
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In order to analyze the conductivity relaxation of the polymer film, the complex 
permittivity was converted to the complex dielectric modulus. The frequency 
dependencies of the real (M′ ) and imaginary (M″ ) parts of the dielectric modulus for 
polymer 5b are shown in figure 3, as determined for different temperatures. 
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Figure 3. Dependence of real and imaginary 
parts of complex dielectric modulus versus 
frequency, at different temperatures, for 
polymer 5b. 

Figure 4. Activation maps for polymer 5b. 
Open points are taken from positions of the  
ε″ (f) maxima and full points are taken from 
positions of the M″ (f) maxima. 

The dispersions of M′  and M″ indicate a presence of relaxation time of distribution of 
conduction. We can observe three relaxation processes. The first two, γ and β, are the 
secondary relaxations connected with local movements and were also observed in the 
dependence of ε″ with frequency. Last one is the conductivity process which masks 
the primary relaxation connected with glass transition and partially also the β 
relaxation process.  The activation map is the best way for a comparison of the 
relaxation processes as well as is necessary for calculation of their activation energy. 
Relaxation times (τ ) of the secondary relaxation processes at various temperatures 
have been determined from maxima position of ε″ at frequency scale. The activation 
plots are shown in figure 4. In figure 4 also the activation energies of the β and γ 
relaxation processes calculated on the bases of these diagrams are presented. 
Relaxation times of the conductivity processes at various temperatures have been 
determined from maxima position of M″ at frequency scale. 

Conclusions 

The introduction 1,4-phenylenediisopropylidene units into the macromolecular chain 
of a poly(ether-imide) resulted in soluble polymers that retain a high thermal stability. 
Also the incorporation of polysiloxane segments into their structure produced  
a polymer with good solubility in organic solvents while retaining high thermal 
stability. Poly(ether-imide)-polydimethylsiloxane copolymer film has low dielectric 
constant, which makes it potential candidate  for future high performance applications 
in microelectronics or in related fields. 
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